Observations & Studies of the Healing Efficacy of the Life Vessel

Rustum Roy

Evan Pugh Professor of the Solid State Emeritus, Penn State University
Professor of Geochemistry Emeritus, Penn State University
Professor of Science, Technology, and Society Emeritus, Penn State University
Visiting Distinguished Research Professor of Materials, Arizona State University
Visiting Professor of Medicine, University of Arizona
Founder and Chairman: Friends of Health

Since 2001 when I first visited the Life Vessel HQ at Cottonwood, Arizona, I—and subsequently with my colleagues who are senior scientists with national stature—have continued to observe and monitor the data on the persons treated in the Life Vessel. I have personally also spent considerable time discussing with several of the persons involved in some of the most dramatic examples of human healing, the precise details of their own situations before and after treatment.

Finally as physical scientists we have studied the device itself, and tried to understand the possible mechanisms of actions of the device. In addition to the performance data noted below, the “theories” or concepts, of the inventor, Barry McNew, are consonant with what we have learned about the physics of the device.

The Scientific Data on the Efficacy

In science, as distinct from modern medicine, the gold standard is (repeatable) experimental results; cause and effect; always supported by data, evidence, etc. I have selected four examples in widely different areas of human health which have led me to my conclusions.

1. **Scleroderma** – I interviewed this person just a short time after she had some of her earlier treatments. Western medicine has given up on this disease. Yet here was a young woman covered in blackened skin, scleroderma’s signature, who had narrowly escaped an amputation of a hand by a couple of exposures to the Life Vessel. That’s it, all she had done. How did she know? First, no gangrene and amputation; second, the black skin had retreated dramatically all over her body as she showed us; and third, the meticulous records from the U. of California at Irvine on her blood and urine. There in black and white was the incontrovertible evidence that two or three exposures to this sound and light device had caused her system, as recorded in their laboratories, to excrete a high percentage of the Hg and other heavy metals in her blood (and importantly, it had increased in the urine).

The most impressive datum of the case is the fact that after a dozen or more treatments she was essentially cured. Unfortunately, some two years later she was back with a recurrence. Now this was the test. Would the same procedures work? That is in logic a very important confirmation of a hypothesis.

They did. The Life Vessel had helped dramatically in a Scleroderma case.
2. **Leukemia** – In examining the records on the wall in the Cottonwood clinic I was struck by the case of the young man with cancer, lying as it were on a deathbed, essentially given up on by a leading national cancer center. After some 2 or 3 dozen exposures to the Life Vessel field, a year or so later, I met Luke first as a robust, healthy, young typical college student bouncing around. Now, after 5 years he is a “survivor” with zero chemotherapy and zero surgery after having been given up on by modern medicine.

3. **Autism** – I was present when two separate gravely autistic children were brought in by their mothers. The demonstration of the 24/7 loving intention of the mother for the child made a deep impression on me (so much so that I wrote about it in my Christmas card on the Madonna effect). What was startling to me, as to a senior research cardiologist from Tucson, who had driven up with me, was the effect of placing the young boy in the Life Vessel. It was unbelievable to see the relaxation, the ceasing of the body movements, etc. No less impressive than the direct data of the effects of over on exposure, were the reports on the life of these youngsters as discussed on site, immediately afterward with the parents or grandparents. They reported uniformly on the radical difference of both the **nature of the improvement and the total effects on the children**.

4. **Melanoma** – I take this case also to illustrate the use of sensible diagnostic technologies to prove a point. The autonomic nervous system is the balance of health. McNew believes that his “revealed” device causes the human system to be tuned towards this balance. And he uses the highest-tech diagnostics, the MIT-designed ANSAR machine, to measure the person **before and after** exposure. Fourteen different parameters are measured after all the electrodes are attached. The differences are obvious—if not easily interpreted in every case—to anyone!

The very wealthy melanoma patient, arriving and departing in private planes, had three large 1-3 cm size tumors in the brain. Her very distinguished personal physician spent an hour on the phone with me, asking to be assured the Life Vessel could do no harm. Having been assured of that, he gave her encouragement to go to Cottonwood, expecting her to survive for only several weeks. After a few treatments the tumors had reduced dramatically, and nearly all disappeared in that time—and she was off to Europe to live another full year.

Full disclosure: I have never received any remuneration from the Life Vessel or any groups associated with it. The research done has entirely been supported by the 501c(3) Friends of Health.
Position

Rustum Roy is Evan Pugh Professor of the Solid State Emeritus, Professor of Geochemistry Emeritus and Professor of Science, Technology and Society at The Pennsylvania State University. He obtained his Ph.D. in Ceramics at Penn State in 1948, after receiving BS and MS degrees in Chemistry, in India. He is a Distinguished Professor in the Materials Program at Arizona State University and visiting Professor of Medicine at the University of Arizona.

Intra-University

At Penn State, besides being the founding Director (for 23 years) of the University's interdisciplinary Materials Research Laboratory, he played a major role in establishing geochemistry, and later solid state science as academic disciplines on the campus. Since 1970 he has played the same role in creating and directing the Science, Technology and Society (STS) Program. In each of these fields Penn State is a national leader.

Materials Research

Professor Roy is one of the nation's leading materials scientists specializing in synthesis of new (ceramic) materials. He has published over 700 papers and books covering both very basic, and applied, science. His research has been directly connected to several totally new materials which have entered the marketplace: two generations of zero expansion ceramics; magnetic garnets; synthetic clays, a large number of high pressure phases. Three major ceramic processes in worldwide use owe a great deal to his research: sol-gel, hydrothermal and glass ceramics. Most recently his lab has become the world leader in diamond and ultra hard materials synthesis and the development of the microwave sintering process.

Honors

He is Penn States senior member of the U.S. National Academy of Engineering, and he also has been elected a foreign member of the Royal Swedish Academy of Engineering Sciences, The Engineering Academy of Japan, the Russian Academy of Sciences and the Indian National Science Academy. He was the principal architect of the Materials Research Society—the world’s premier such in the field. In Japan, the world’s leader in his research field, he has been awarded an honorary doctorate by the Tokyo Institute of Technology, received the International Prize of the Fine Ceramic Association and was the first foreigner ever elected to Honorary membership in the Ceramic Society of Japan. In 1993 he received the American Chemical Society’s Dupont Chemistry of Materials Award, became a Distinguished Life member of the American Ceramic Society, and became the first materials engineer to join 42 from other fields elected in 100 years, to the ASEE Hall of Fame.

Professional STS

Professor Roy is one of the very few active scientists who is also a science policy analyst and also a theologian-philosopher. In the STS field Professor Roy is recognized as one of its founding fathers. His specialties cover science policy, science education and the science-religion interface. He has written 2 major books and 200 articles in these fields; and has given the prestigious Hibbert Lectures in theology in London. During the last several years he has been focusing his writing and research in Integrative Medicine and it relation to science.

Science Policy

Roy has been involved in science policy making and analysis for two decades at the Federal and State levels, and in the private sector as first chair of the National Council of Churches Committee on Science, Technology and the Church. He has become the national "leader of the opposition" to the U.S. Establishment’s science policy, advocating re-balancing of public research and development support towards real science and engineering and away from esoteric abstract science. Roy was the only prominent scientist to campaign against the Supercollider; and shares with many other leaders the opposition to the peer review of proposals and papers. For the last decade he has become a national spokesperson for the cause of a radical redirection of math and science education first towards the goal of the technological literacy of the majority of citizens (instead of making more or better "scientists") and second towards substituting real (sense-able) science for abstract science as the core science for all non scientists.
Rustum Roy

Newsweek has accurately described him as 'the leading contrarian' among U.S. scientists. The U.S. House of Representatives’ Committee on Science, Technology, and Research gave him its only standing ovation in 16 years after one of his recent testimonies. Rustum Roy is the only practicing prominent American scientist who has studied and written critically about U.S. science policy from the inside. His criticisms of U.S. policy, regarded as far out a decade ago, are now called 'prescient'. He calls himself a citizen-scientist trying to be a whole person.

Rustum Roy, on The Pennsylvania State University's faculty for sixty years, is among the two or three leading materials scientists in the U.S. Author of over 1000 papers with major contributions to real science from inventing the sol-gel process to glass ceramics to diamond films and nanocomposites and microwave and laser processing of materials. He is the senior-most member in the U.S. National Academy of Engineering specializing in (ceramic) materials--today one of the hottest fields in science. He has also been elected as a foreign member of the Swedish, Japanese, Indian, and Russian National Academies, and 'knighted' by the Emperor of Japan.

When the history of postwar American higher education is written, Rustum Roy will be remembered as the most effective champion of interdisciplinarity and integrative learning. In materials science and engineering, the prototype of interdisciplinarity in the science disciplines, Roy not only established working models locally in both degree programs and research laboratories and led them to national prominence, but he led the campaign in the U.S. and abroad to institutionalize 'materials' as a permanent part of academia. His conferences, workshops, and committees all helped, but the establishment of a new professional society - the Materials Research Society - of which he was the principal architect, proved to be the most effective strategy.

A decade later, Roy launched a similar campaign, again starting locally, to institutionalize formally the bridge in American education across the widening chasm of C.P. Snow's 'Two Cultures'. He became the prime mover in the Science, Technology, and Society (STS) movement, which, between 1970 and 1990, had established itself on 100 university campuses and had a foothold in 2000 colleges and has successfully infiltrated into the K-12 system.

Rustum Roy, a lifelong dedicated radical Christian, was also intensely involved in reforming religious institutions, locally, nationally, and worldwide. The direction was always towards greater inclusivity. He helped start the Sycamore Community, one of the oldest ecumenical house churches in the country, and was for 30 years on the board of the pioneering national ecumenical retreat center, Kirkridge. Since giving the prestigious Hibbert lectures in London, incorporating the insights of science and technology into the world's religions, he has become a spokesman for a 'radical pluralist' integration among the world's religions and cultures.

What is most interesting about Rustum Roy is the breadth, not only of his interests, but his activities and achievements in each field. Perhaps the best way to gauge this breadth is to note the subjects of his well-known books (outside his science); science policy; sexual ethics; radioactive waste management; liturgies for small groups. He is as equally at home among the world's leading theologians, clergy, artists, and healing 'gurus' as he is among scientists/engineers from industry or academe, and among social reformers or activists in entrepreneurial business innovation.

* Evan Pugh Professor of the Solid State Emeritus, Professor of Geochemistry Emeritus, Professor of Science, Technology, and Society Emeritus at The Pennsylvania State University; Visiting Distinguished Professor of Materials at Arizona State University; Visiting Professor of Medicine at the University of Arizona.

Address:
102 Materials Research Laboratory, The Pennsylvania State University,
University Park, PA 16802
Tel.: 814-865-3421; Fax: 814-863-7040; Email: rroy@psu.edu.
www.rustumroy.com
Rustum Roy

Present Positions
The Pennsylvania State University
 Evan Pugh Professor of the Solid State Emeritus; Professor of Science, Technology and Society Emeritus; Professor of Geochemistry Emeritus
The Arizona State University
 Distinguished Professor in the Materials Program
The University of Arizona
 Visiting Professor of Medicine

Birth and Citizenship
July 3, 1924; Ranchi, Bihar Province, India; naturalized U.S. citizen, 1961

Education
Patna University, 1940-44: B.Sc. (Hons) 1942, and M.Sc. 1944, in Physical Chemistry.

Work Experience
The Pennsylvania State University: Postdoctoral Fellow, 1948-49
Government of India, Central Glass and Ceramic Research Institute, Calcutta, India: Senior Scientific Officer, 1950
The Pennsylvania State University:
 Research Associate 1950-51, Assistant Professor 1951-54, Associate Professor 1954-57, Professor of Geochemistry 1957-present; Professor of the Solid State 1967-present; Evan Pugh Professor 1981-present.
 (First) Chairman, Solid State Technology interdisciplinary graduate degree program 1959-67
 (First) Director, Materials Research Laboratory 1962-85
 Science, Technology and Society Program 1969-present: Chairman 1977-84; (First) Director 1984-1990
Institute for Policy studies; Washington, D.C.; Visiting fellow 1980-85

Professional Activities
Life Fellow of the Mineralogical Society of America
Fellow of the American Ceramic Society; Chairman, Basic Science Division 1967-68;
Fellow, American Association for the Advancement of Science; Chair, Chemistry Section 1985-86
Fellow, American Physical Society
Materials Research Society, Principal architect and Founding member 1973; Councillor, 1973-88, 1990-;
Vice President 1975-76; President 1976
National Association for Science, Technology and Society, Founder and first President, 1988; Corporate
Chair, 1989-96
Chairman, first U.S. delegation to “Japan-American International Cooperation Seminar on Ceramic
Materials,” Tokyo, Japan, 1969
Chairman, “National Colloquy on the Field of Materials,” 1969
Chairman, First Colloquy on University-Industry Research Cooperation, 1972
Co-chair, Inaugural Meeting of the Materials Research Society, University Park, PA, 1973
Chairman, Steering Committee, NAS-NAE Conference on “Materials and the Development of Nations,”
1976
Co-chairman, International Summer School on Crystal Growth, 1977
Opening Plenary Speaker, “First International Conference on New Materials,” Osaka, Japan, October 1986
Opening Plenary Speaker, International Conference on New Diamond Science and Technology, Kobe,
Japan, July 1994
Opening Plenary Speaker, Austceram International Conference, Sydney, Australia, 1994
Opening Plenary Speaker, First World Congress on Microwave Processing, Orlando, FL, January 1997
Chairman and Organizer, First national STS Conference on Technological Literacy, Baltimore, MD, 1986
Chair, Second International Conference of New Diamond Technology, Washington, DC, 1990
Organizer and Chairman, Roundtable on Impact of Science on Society at the Gorbachev “State of the
Organizer and Chair, International Conference of Advances in Real Materials, Washington D.C., 1998
Organizer and Chair, Interdisciplinarity Revisited: Materials Research as a Case Study, University Park,
PA.
Honorary Founding Editor, 1985-
Founding Editor, Journal of Educational Modules for Materials Science and Engineering (now called The
Journal of Materials Education), 1979-present
Founder and Editor-in-Chief, Bulletin of Science, Technology and Society, Pergamon Press, 1981-87 (STS
Press 1987-97) Sage Science Press 1997-
Founder and Editor-in-Chief, Materials Research Innovations, Published by Springer Verlag, 1997-
Foreign Counselor, Societe Francaise de Mineralogie, 1973-80
Materials Chemistry, 1990-93; Technology and Society 1982-
Member, Advisory Council, School of Engineering, Stanford University, 1982-86

Professional Recognition and Awards
AAAS, Fellow, 1978
American Physical Society, Fellow, 1990
American Ceramic Society, Fellow, 1967
Ceramic Society of Japan, Fellow, 1991
National Academy of Engineering (U.S.), elected 1973
Royal Swedish Academy of Engineering Sciences, Foreign Member, elected 1977
Indian National Science Academy, Foreign Fellow, elected 1984
Indian Academy of Sciences, Honorary Fellow, 1990
Engineering Academy of Japan, Foreign Associate, 1991
Research Areas
New Materials Preparation and Characterization; Crystal Chemistry, Synthesis, Stability, Phase Equilibria and Crystal Growth in Non-Metallic Systems; Ultrahigh Pressure Reactions in Solids; Radioactive waste forms; nanocomposites, zero-expansion ceramics, diamond films
New Materials Processing. Principal architect of sol-gel and hydrothermal processes; microwave and pulsed laser processing
Science, Technology and Human Values, Science and Public Policy, Science Technology and Religion
Technological literacy for all citizens
Innovative science education, via new epistemology, new materials and new delivery systems
Integrative Medicine data precursors to paradigm changing science

Industrial Experience
Founder and Director, Tem-Pres Research, Inc. 1957-69
Consultant retained by:
Initiator of University-Industry Consortia:
 Industrial Coupling Program at The Pennsylvania State University 1963-present; Consortia Chemically Bonded Ceramics (1985-1997) and Diamond and Related Materials (1986-94)
 Materials Advisory Panel for the Commonwealth of Pennsylvania, Chair 1965-78

Committee Activities (National and State)
National Academy of Sciences:
 Mineral Science and Technology Committee, Member 1966-69; Chairman, Panel on Non-metallic Materials 1966-69; Committee on the Survey of Materials 1970-74; Chairman, Panel on Universities 1970-74
National Academy of Sciences/National Academy of Engineering/National Research Council:
National Materials Advisory Board, Member 1970-76; Chairman, Council of Materials Science-Technology Interface 1970-76; Committee on Radioactive Waste Management 1972-75; 1976-80; Chairman, Panel on Waste Solidification 1976-79; Committee on USSR and Eastern Europe 1974-79; Chairman 1976-79; National Research Council, Member 1962-72; Executive Committee of Chemistry Division, Member 1967-72; Materials Advisory Board: Committee on Ceramic Materials, Member 1963-64; Committee on Materials Characterization 1964-66; Chairman, Panel on Structural Characterization 1964-66; Committee on Ceramic Processing 1966-68

National Science Foundation:
Advisory Committee on Ethical and Human Value Implications of Science and Technology 1973-76
Engineering Advisory Committee 1968-72
Advisory Committee to Division of Materials Research, Metallurgy and Materials Section 1973-77

Commonwealth of Pennsylvania, Governor’s Science Advisory Committee: Member under Governors Scranton, Shafer and Shapp, 1965-78; Member Science and Technology Task Force under Governor Casey, 1987-88

Co-Professional Activities (National and State)
National Council of Churches:
Planning and Strategy Committee, 1964-70
Chairman, Committee on Science, Technology and the Church, 1966-68
Dag Hammarskjold College, Columbia, MD: Member, Board of Governors, 1968-75; Chairman, 1970-72; 1974-75
Kirkridge Retreat Center, Bangor, PA: Member, Board of Directors, 1956-83; Chairman, 1970-72
Calvert Social Investment Fund, Advisory Committee, 1990--; Calvert World Values Fund, Director, 1992-
Lecturer, and author of magazine articles and books, on the interaction of religion and philosophy with science and contemporary society
Founder and Chair “Friends of Health,” advocating not for profit whole person healing

Publications
6 books; 800+ papers in science, 250+ papers in science and society-related papers; 25 patents and patents pending